DNS of reduced equations for rotationally constrained nonhydrostatic flows

Michael Sprague, Keith Julien
Department of Applied Math, University of Colorado at Boulder

Edgar Knobloch
Department of Physics, University of California–Berkeley

Joseph Werne
Colorado Research Associates, Northwest Research Associates

To be presented at the 15th Conference on Atmospheric and Oceanic Fluid Dynamics, Cambridge, MA, June 12-17, 2005.

Using DNS, we investigate the solution to a reduced system of nonlinear PDEs for rapidly rotating convection: non-hydrostatic quasi-geostrophic equations (NHQGE). The NHQGE are derived asymptotically in the limit of small Rossby number from the Navier-Stokes equations under the Boussinesq approximation. Two distinct vertical scales are present: a small-scale occurring as a consequence of rotational alignment and large-scale due to convective forced motions. The resulting equations filter fast inertial waves and relax the need to resolve Ekman boundary layers, and are potentially applicable to deep-ocean turbulent convection, which, under thermal forcing, is characterized by thermal and vortical coherent structures that span the layer depth. We examine flow morphology (plumes and Taylor columns) as a function of scaled Rayleigh number and compare results from a single-mode theory. We also investigate the dynamics of the vortical structures and their effect on lateral mixing. Representative results for temperature are shown below for Prandtl number 7 and scaled Rayleigh numbers of 40 (left) and 80 (right).

Figure 1: Snapshots of volume-rendered temperature anomaly θ' for $Pr = 7$ and $\tilde{Ra} = 40$ (left) and $\tilde{Ra} = 80$ (right). Color tables are on the left of each figure; black regions indicate field values with zero opacity.