Coupling meso- and micro-scale fluid dynamics codes for wind-energy computing

65th APS DFD Meeting
San Diego, CA, November 19, 2012

Ignas Satkaukas¹,²
Michael A. Sprague¹ and Matt Churchfield³

¹Computational Science Center, NREL
²Applied Mathematics, UC Boulder
³National Wind Technology Center, NREL

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Motivating problem

NREL LDRD Project (PI: Pat Moriarty): Wind Turbine Array Fluid Dynamic and Aero-elastic simulations

- Create a computational simulation tool that predicts the response and interaction of
 - turbine structural dynamics
 - turbine-proximity fluid dynamics
 - meso-scale atmospheric fluid dynamics

- Couple Weather Research and Forecasting (WRF) code to OpenFOAM

- Couple OpenFOAM to NREL’s aeroelastic design code, FAST
OpenFOAM-WRF coupling: Challenges

- Codes are addressing different physics
 - OpenFOAM: incompressible Navier-Stokes equations
 - WRF: compressible Euler equations

- Codes use different discretization methods
 - OpenFOAM: finite volume plus semi-implicit time integration
 - WRF: finite differences plus explicit time integration

- Computational grids are non-matching (space and time)
Approach

- Create an open-source test platform comprised of 2-D codes that mimic WRF and OpenFOAM
- Develop and implement algorithmic-coupling strategies and examine performance
Notation:

\(\mathbf{u}_E(x, y, t), \rho_E(x, y, t) \): Solution to Euler equations in \(\Omega_E \)

\(\mathbf{u}_{NS}(x, y, t) \): Sol’n to Navier-Stokes eqs. in \(\Omega_{NS} \); \(\rho_{NS} = \text{const} \)

\(\Omega_{NS} \subset \Omega_E \)
2-D Test-problem domain

Challenge:

\[\nabla \cdot (\rho_{NS} \mathbf{u}_{NS}) = 0 \quad \nabla \cdot (\rho_{E} \mathbf{u}_{E}) \neq 0 \]
Consider case where mean flow is North-East in the Euler domain and we wish to drive the flow in the Navier-Stokes (NS) domain.
One-way coupling: Partial boundary

\[\Gamma_{NS} \]

\[\frac{\partial \mathbf{u}_{NS}}{\partial n} = 0 \]

- Apply velocity boundary conditions where there is inflow; outflow BCs where there is outflow

- What is \(\mathbf{F} \)?

\[\mathbf{u}_{NS} = \mathbf{F}(\mathbf{u}_E, \rho_E, \rho_{NS}) \]
Partial boundary coupling: Inflow

- What is an appropriate \(F \) in \(\mathbf{u}_{NS} = F(\mathbf{u}_E, \rho_E, \rho_{NS}) \)?

- If we take \(F = \sqrt{\frac{\rho_E}{\rho_{NS}}} \mathbf{u}_E \), then the kinetic-energy density along the "inflow" interface is matched, i.e.
 \[
 \frac{1}{2} \rho_{NS} \mathbf{u}_{NS} \cdot \mathbf{u}_{NS} = \frac{1}{2} \rho_E \mathbf{u}_E \cdot \mathbf{u}_E \quad \text{on inflow}
 \]

- We expect that \(\frac{\rho_E}{\rho_{NS}} \approx 1 \)
One-way coupling: Projection

- Interested in defining flow boundary condition on all sides

\[\mathbf{u}_{NS} = G(\mathbf{u}_E, \rho_E, \rho_{NS}) \text{ on } \Gamma_{NS} \]

- Challenge: Need to choose “appropriate” \(G \)
Projection coupling

- Use Lagrange multiplier to project $\rho_E u_E$ onto incompressible solution

- Introduce “projection” domain Ω_P with boundary Γ_P, where $\Omega_{NS} \subseteq \Omega_P \subset \Omega_E$

- Problem: Find $\lambda(x, y)$ in Ω_P, with $\lambda = 0$ on Γ_P

 \[\nabla \cdot (\rho_E u_E - \nabla \lambda) = 0 \quad \Rightarrow \quad \nabla^2 \lambda = \nabla \cdot (\rho_E u_E) \]

- Let $u_{NS} = (\rho_E u_E - \nabla \lambda)/\rho_{NS}$ on Γ_{NS}
2-D Test problem

\[u_0(x, y) = u_\infty - \frac{\lambda y}{2\pi} \exp \left[\eta(1 - r^2) \right] \]

\[v_0(x, y) = v_\infty + \frac{\lambda x}{2\pi} \exp \left[\eta(1 - r^2) \right] \]

\[\rho_0(x, y) = \left\{ T_\infty - \frac{(\gamma - 1)\lambda^2}{16\eta\gamma\pi^2} \exp \left[2\eta(1 - r^2) \right] \right\} \frac{1}{(\gamma-1)} \]

\[r = \sqrt{(x - x_0)^2 + (y - y_0)^2} \]

\[u_\infty = v_\infty = T_\infty = 1 \]

\[x_0 = y_0 = -5, \quad \lambda = 5, \quad \eta = 1, \quad \gamma = 1.4 \]

- \(\Omega_E = [-10, 10]^2; \Omega_{NS} = [-2.5, 2.5]^2 \)

- Isentropic vortex (Garnier et al., 2001); exact solution to compressible Euler equations

- Propagate vortex from Euler domain into NS domain
One-way coupling results: Velocity magnitude

Perturbation velocity magnitude in Ω_{NS} at $t = 5$:

Euler Partial Boundary Projection

[0, 1] color scale; $Re = 100$
One-way coupling results: Kinetic-energy density

Kinetic-energy density in Ω_{NS} at $t = 5$:

Euler Partial Boundary Projection

[0, 2.5] color scale; $Re = 100$
Next steps

- Continue evaluating one-way coupling
- Extend coupling schemes for two-way interaction
- For now, ignore the elephant in the room
Acknowledgments

- John Michalakes, Julie Lundquist, Sang Lee, Pat Moriarty
- Center for Research and Education in Wind (CREW) grant
 Model coupling for multi-scale wind-energy computing
- NREL Laboratory Directed Research & Development grant
 Wind turbine array fluid dynamic and aero-elastic simulations (PI: Pat Moriarty)